If it's not what You are looking for type in the equation solver your own equation and let us solve it.
13x^2-152=0
a = 13; b = 0; c = -152;
Δ = b2-4ac
Δ = 02-4·13·(-152)
Δ = 7904
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7904}=\sqrt{16*494}=\sqrt{16}*\sqrt{494}=4\sqrt{494}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{494}}{2*13}=\frac{0-4\sqrt{494}}{26} =-\frac{4\sqrt{494}}{26} =-\frac{2\sqrt{494}}{13} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{494}}{2*13}=\frac{0+4\sqrt{494}}{26} =\frac{4\sqrt{494}}{26} =\frac{2\sqrt{494}}{13} $
| 5.4/(2y)=9 | | 8n-20=8n-20 | | 7-4u=-4u+7 | | -18+y=10 | | 3^(x+1)=2187 | | -3·(x–2)–6x=8·(2x+7) | | Y+2-3=b | | (x+4)^2=x^2+29 | | 3/5x-11=28 | | 50h=150-45h | | 4/5m-11=37 | | 24+12m=180 | | 21x^2-9=0 | | 6m-6=8+4 | | 50x=150-45x | | 20÷x=1/3 | | 0.3z-0.03=0.04z | | 2^2x=0.125 | | |4x-2|+7=37 | | 1=0.025x^2+0.1 | | 1=0.025x^2+0.1,x | | -4(7x-6)+1=-28x+25 | | 0.18(y-9)+0.16y=0.14y-0.01(40) | | Y=50-1/2x= | | 3–2x+4x+6=19 | | -6x+6=-12x+8 | | 8x+20=-30+42 | | 11x2-21x=0 | | Y=-1/6x-7;(16,0) | | 350=x-0.1x | | 5(y-10)=3y | | 32+3x=146 |